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1. Abstract 

 
The focus of this work is the appropriate combination of different physical and 

numerical disciplines to account for the relevant factors inherent to the design of 

a lightweight membrane structure.  The scope of the work encompasses 

numerical form finding of tensile structures, computation of dynamic stresses 

and deformations of the initial structures under various tensile loads, and the 

modelling of wind flow in a neutrally stratified Atmospheric Boundary Layer. 

In this way various wind induced aeroelastic loadings and deformations on the 

structure (the Leeming Awning) can be derived. 
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2. Structural Modeling of the Leeming Awning  

The Leeming Awning is a bespoke tensile structure designed to be quickly attached to the 

front of a 17th century cottage to provide rain protection and shading.  Structural modeling 

is based on Finite Element Analysis (FEA). Starting from the basics of continuum mechanics 

and introducing methods of space and time discretisation, the formulation for a generic 

hexahedral 3-dimensional Finite Element is derived and then used.  

For the modeling of membrane structures, a special type of Finite Element is based on 

this generic hexahedral element. Usually, membrane structures used in civil engineering are 

prestressed. The consideration of this prestress state requires experimental or 

computational techniques, commonly referred to as form finding procedures, which are 

briefly introduced.  

All the techniques presented in this pasticcio are applied to set up the structural model 

of the Leeming Awning mobile canopy structure. In later works, this model is used for 

further analysis with respect to wind loading, both on a rigid structure and with taking into 

account aero-elastic effects using methods of Fluid-Structure Interaction.  

2.1 Characteristics of Membrane Structures  

Shape and physical behavior of fabric structures is very different to those of conventional 

constructions based on stiff frames. These differences result from the missing bending stiff-

ness of membrane material. Without the possibility of load transfer via bending action, the 

whole load transfer has to be carried out through stress acting tangential to the membrane 

surface. This tangential acting stress is referred to as membrane stress. The membrane is 

able to carry tension stress only. Compression in the membrane leads to a phenomenon of 

structural instability vis. the occurrence of wrinkles.  

 

Due to the fact that the distribution of the tangential stress over the membrane thickness 

is constant, the utilisation of material strength is optimal. However, a strong interaction 

between shape and structural behavior occurs. In a static configuration the tangential 

tension stresses of the membrane are in equilibrium at every point. If this equilibrium is 

disturbed, e.g. by an external load, the membrane will react with deformations in such a 

way that the internal membrane stress and the external loading reach a new state of 

equilibrium. For loads acting perpendicularly to the membrane surface this usually results 

in large deformations.  

The sensitivity of membrane structures with respect to external loadings is determined 

by their stiffness. This stiffness is mainly a result of two factors: geometry and prestress.  

For distributed loads acting not only tangential to the surface, including dead load of 



the membrane material, the geometry of the membrane needs to be curved in order to 

enable equilibrium between internal membrane stress and loading. These double curved 

surfaces can be classified as synclastic or anticlastic, depending on the sign of their 

Gaussian curvature.  

Prestress is introduced in membrane structures to provide the flexible fabric with an 

additional geometric stiffness and ensure that for all load cases no compressive stress 

occurs. The initial geometry of the prestress membrane is the shape, for which the 

membrane forces introduced by the prestress and those due to dead load are in 

equilibrium. In general, this shape is unknown and form-finding procedures are used to 

determine the initial shape. These can be conducted as experiments or by numerical 

computations, the form-finding computations.  

For membrane structures, the prestress is realised as mechanical or pneumatic prestress. 

Since prestress can only be imposed as tension, it is also known as pretension.  

a Pneumatically imposed prestress  

Pneumatically imposed prestress is caused by a pressure difference between both 

sides of the membrane. This leads to overall synclastic shapes with positive Gaussian 

curvature, such as balloons or cushions. Air supported structures, usually in the form 

of shallow spherical ’caps’ are another typical application. Fig. 2.1 provides examples 

of synclastic, pneumatically prestressed constructions.  

 

 (a) Balloon shape.   (b) Cushion shape.  

  
Figure 2.1: Generic synclastic shapes.  

 

 
 

b Mechanically imposed prestress  

Mechanically imposed prestress is introduced by tightening the anchorage. Typically, the 

geometries for mechanically prestressed structures are anticlastic, meaning the sign of 

their Gaussian curvature is negative. In fig. 2.2 the four generic types of anticlastic 

surfaces are presented: cone, saddle-surface, hyperboloid and "ridge and valley".  



 

(a) Saddle shape. (b) Cone shape.  

 

(c) ’Ridge & valley’ shape. (d) Hyperboloid shape.  

Figure 2.2: Generic anticlastic shapes.  

In the following, only mechanically prestressed structures shall be considered.  

Prestressed membrane structures commonly require continuous support along the 

edges to maintain a prestressed state. This support can be rigid, such as a stiff beam or 

anchorage or, more commonly, flexible. Flexible support is realised by cables attached to 

the edges of the membrane. They are curved due to the (pre-)tension stress of the 

membrane and, therefore, also subject to (pre-)tension. If the stress at the edges of the 

membrane acts tangential to the edge cables, the membrane might slide along the cable, 

which is usually prevented by additional fittings.  

For the realisation of membrane structures, a variety of synthetic materials with 

different properties are available. They can be categorised into two groups: fabrics and foils.  

a Fabrics  

Fabrics show an anisotropic behavior in the directions of their fibres. Corresponding 

to the manufacturing process of fabrics, the two directions are called warp and weft. 

The fabric determines the load carrying behavior. Commonly a coating is applied 

which protects the fibers from mechanical, chemical, or biological damage and 

determines the transparency and sealing. Typical examples for these composite 

materials are PVC (Polyvinylchloride) coated polyester fabrics or PTFE 

(Polytetrafluoroethylene) coated glass fiber fabrics.  

b Foils  

Foils have an isotropic material behavior. A typical material for foil constructions in 

civil engineering is ETFE (Ethylentetrafluoroethylene). ETFE is highly transparent, 

has a high chemical resistance and a penetrability towards air that is small enough for 

the usage in pneumatic structures. Compared to fabric materials of the same 

thickness, foils typically have a lower load carrying capacity. Therefore, foil structures 



 

 

usually have a limited free span.  

2.2 Fundamentals of Structural Analysis  

2.2.1 Fundamentals of Continuum Mechanics  

In the following, a brief introduction to the field of continuum mechanics is given. The pre-

sented explanations are restricted to those most relevant to the topic of light-weight struc-

tures.  

2.2.1.1 Differential Geometry  

A material point M of a continuous body B in a three dimensional space can be identified 

by its position vector x(θ
1
, θ

2
, θ

3
). The position vector refers to curvilinear convective coor-

dinates θ
i 
(fig. 2.3). In the following, the summation convention by Einstein will be used. 

Latin indices take values 1 to 3, while Greek indices take values 1 and 2. The base vectors of 

the curvilinear coordinate system θ
i 
can be derived as:  

 

 
      (2.1) 

 

The elements gi are called covariant base vectors. Additional to the covariant basis, a recip-

rocal (or dual) basis is introduced. The elements of the reciprocal basis are called contravari-

ant base vectors g
i
. The two bases gi and g

i 
satisfy the following condition:  

gi ·g
j 

= δ
j

i    
(2.2)  

δ
j

i 
is the (mixed) Kronecker delta. Based on the curvilinear coordinate system θ 

i 
the con-

travariant base vectors can be derived by the following equation:  

  

              (2.3) 

 

By using the scalar product on two covariant base vectors, the metric coefficients gij of the 

covariant basis are calculated. Same holds for the contravariant base vector and the metric 

coefficients g
ij 

of the contravariant basis:  

gij=gi ·gj              g
ij 

= g
i 

· g
j 

     (2.4)  

 
 



 

 

  

The Unity (or Identity) tensor or Metric tensor of a coordinate system is derived as:  

I =gijg
i 

⊗ g
j 

=g
ij 

gi ⊗gj =gi ⊗g
j 

=g
i 

⊗gj (2.5)                    (2.5) 

with           as the dyadic product.  

2.2.1.2 Kinematics  

For each material point M of a continuum body B the mapping κ assigns a position x at a 

certain time t. The configuration at a defined time t=t0 is called the reference configuration 

and is the initial configuration of the system. Configurations for t>t0 are called current 

configurations. In the following, all quantities based on the reference configuration are ex-

pressed in upper case letters, while those based on current configurations are expressed in 

lower case letters.  

The motion χ is defined as the transformation from reference to current position at 

a time t: 

 x =χ(X, t)    (2.6)  

Commonly, in structural mechanics, a Lagrangian description is used, in which the coordi-

nate system "sticks" to a material point and changes, when the position of the material point 

is modified. Therefore, a material point is identified by its Lagrange coordinates X(θ
1
, θ

2
, θ

3
) 

 



 

and the point in time t. The displacement field d from reference to current configuration can 

be expressed as:  

 
d(X, t)=χ(X, t)−X =x(X, t)−X   (2.7)  

According to the definition of the co-and contravariant base vectors in the current con-

figuration (gi and g
i
) at a position x(θ

1
, θ

2
, θ

3
)  (eq. 2.1 and eq. 2.3), the co-and contravariant 

base vectors of reference configuration at a position X(θ
1
, θ

2
, θ

3
) are:  

 

      

   (2.8)       
 

The material deformation gradient F describes the mapping of a differential line element in 

the reference configuration dX =Gidθ
i 
into a line element in the deformed configuration dx 

=gi dθ
i
:  

 

  (2.9) 

 

Commonly, F is an asymmetric second order tensor. As the mapping of a line element is 

equivalent to the mapping of a base vector from reference to current configuration the de-

 



formation gradient can be used to relate co-and contravariant base vectors in reference and 

current configuration:  

gi =F ·Gi    g
i 

= F
−T 

· G
i                  

Gi =F
−1 

·gi                   G
i 

= F
T 

· g
I                                

(2.10)  

Accordingly, F can be derived as:  

               

(2.11) 

 

The deformation gradient contains information about the complete deformation process, 

including rigid body deformations. Therefore, it is not objective and cannot be used directly 

as a strain measure. Instead, the objective, symmetric Green-Lagrange (GL) strain tensor E 

is introduced for the description of large displacements (with I as the identity tensor):  

 

                           (2.12)  

 
 

2.2.1.3 Constitutive Equations  

The constitutive equation describes the connection between static and kinematic quantities, 

thus between stress and strains. The energetically conjugate quality for the Green-Lagrange 

(GL) strain tensor E is the symmetric second Piola-Kirchhoff (PK2) stress tensor S.  

GL strain tensor and PK2 stress tensor are used to compute the internal energy of a 

deformed body. The property of orthogonality of the co-and contravariant metrics are used 

to ensure that the internal energy is independent of the used metric: the strain tensor is 

based on the covariant, while the stress tensor is based on the contravariant basis. The PK2 

stress tensor is based in the reference configuration and has no physical meaning. A 

measurement for the real physical stress is the symmetric Cauchy stress tensor σ:  

 
                                                                                                                     

(2.13)  

 

With the use of the deformation gradient, the PK2 stress tensor can be transformed into the 

Cauchy stress tensor and vice versa:  

σ=(detF)
−1

FSF
T                                       

S =detFF
−1

σF
−T                                                                         

(2.14)  

In the scope of this work, large deformations with small strains are analyzed. The St. 

Venant-Kirchhoff material law is used, which is a generalisation of the linear elastic 

Hooke’s material law for large rotations. Using the strain energy density W
int

(E), the con-

stitutive relation can be formulated as:  

 

 

 



 

  (2.15) 
 
 

  

The fourth order elasticity tensor C is derived by linearising the constitutive relation:  

 
 
                                                         
(2.16) 

 

∂E and describes a linear relation between the GL strain tensor E and the PK2 S stress 

tensor:  

 
                                                         
(2.17)  

The general elasticity tensor has 3
4 
=81 independent coefficients, which can be reduced to 36 

due to the symmetry of the PK2 stress and GL strain tensors. For an isotropic material, two 

parameters are sufficient to describe the material properties. In a mathematical context 

usually the Lamé constants λ and μ are used, while in an engineering context Young’s 

modulus E and Poisson’s ratio ν are applied.  

 

 
 (2.18) 

 

Using the Lamé constants, the components of the elasticity tensor for an isotropic material 

can be determined by:  

C
ijkl 

=λG
ij

G
kl 

+μ[G
ik

G
jl 

+G
il

G
kj

]                                          (2.19)  

2.2.1.4 Equilibrium Conditions  

Within this work, no velocity dependent physical damping is considered. The momentum 

balance principle states that inner forces, inertia forces, external forces, and body forces 

acting on a body and its surface have to be in equilibrium. In the current configuration, this 

equilibrium is expressed in eq. 2.20, which is known as Cauchy’s first equation of motion.  

 
                           (2.20) 
 

 
In the reference configuration, the momentum balance principle is formulated as: 

 
 
                              (2.21) 

 

 

 

 

 

 

 



B and b are vectors of body forces per volume unit, acting in the reference and current 
configuration respectively. The acceleration field d is the second derivative of the displace-
ment field with respect to time. P is the first Piola Kirchhoff (PK1) stress tensor, which is 
asymmetric and defined in both, the current and the reference configuration. Therefore, it is 
advantageous to exchange it for the PK2 stress tensor using eq. 2.22.  

 
P =FS    (2.22)  

The equation of motion expressed with the PK2 stress tensor is the following:  
 
            (2.23)  
 

 

Since the equation of motion has to be fulfilled for every domain Ω0 it can be transferred 

into a local perspective:  

 

∇ ·(FS)+B −ρ0d =0    (2.24)  

Together with appropriate initial conditions and boundary conditions, eq. 2.12, eq. 2.17, 

and eq. 2.24 present the strong form of the elastic dynamic boundary value problem in 

material description. It is a system of nonlinear coupled hyperbolic partial differential 

equations. The initial conditions describe position, state of deformation, and state of motion 

at the initial point in time. Therefore, the displacement field d =d0 and the velocity field 

d˙=d˙
0 are to be prescribed at time t=t0 for the whole domain Ω0.  

The boundary conditions on the body surface Γ consist of the Dirichlet boundary condi-

tion ΓD, which specifies a prescribed deformation d
ˆ 
of the boundary surface and the Neu-

mann boundary condition ΓN, which specifies a prescribed force vector Tˆ
N on the 

boundary.  

 

 

  (2.25) 

 

At a specific point of the boundary for a specific degree of freedom, either a Dirichlet or a 

Neumann boundary condition can be prescribed:  

 

                    (2.26) 

  

 

2.2.1.5 The Weak Form -the Principle of Virtual Work  

For two-or three-dimensional problems, an exact solution of elastic dynamic boundary 

value problem is in general not possible. In the scope of this work, the well established 

 

 

 



Finite Element Method is used to solve problems of structural mechanics.  

The Finite Element Method is based on variational principles and provides a solution 

technique in which selected field equations and selected boundary conditions are satisfied 

in integral form. In contrast to the original differential equation, in the integral formulation 

the requirements for differentiability of the solution functions are weaker. Therefore, the 

integral form is referred to as the weak form, whereas the original differential equation is 

referred to as the strong form of the problem.  

The most basic and common variational principle is the principle of virtual work. It is 

the basis of standard Galerkin finite element models. Using the principle of virtual work, 

the equilibrium condition and the traction boundary conditions are not exactly satisfied but 

are approximated in an integral sense. The kinematic equation and the material law are 

represented exactly.  

To derive the principle of virtual work, the first Cauchy equation of motion and the 

Neumann boundary conditions are multiplied by an arbitrary test function and integrated 

over the volume of the domain Ω0. The test function is chosen as a variation of the 

displacement field δd. This virtual displacement field can be arbitrary but has to be 

compatible to the Dirichlet boundary conditions. By multiplication of the equation of 

motion and the Neumann boundary conditions with a virtual displacement field, the 

existence of a virtual work is assumed. In a state of equilibrium, the virtual work δW, that is 

performed by the internal and external forces of the system due to the virtual displacement 

field shall be zero.  

δW=δWdyn+δWint−δWext=0                            (2.27)  

The virtual work δW can be separated in contributions due to inertia forces δWdyn, internal 

forces δWint, and external forces δWext.  
 
 

       (2.28) 
 
        (2.29) 
 
          (2.30) 

 
  

Equation 2.29 contains the expression of virtual strain δE. δE is related to the virtual dis-

placement δd by the following relations:  

  
  (2.31) 

 
 

 

with  

 
 

 

 

 



    (2.32) 

 

Inserting eq. 2.28, eq. 2.29, eq. 2.30 into eq. 2.27, the weak form of the boundary value 

problem of nonlinear elastic dynamics based on the principle of the virtual work is formu-

lated: 

 

 

  (2.33) 

  
  

The principle of virtual work is equivalent to the field equations (eq. 2.12, eg. 2.17, and 

eq. 2.24), as long as the same function spaces are used to solve both system of equations. For 

the derivation of the principle of virtual work, only the variation of the displacement is per-

formed. There is a practically infinite multitude of alternative variational formulations, con-

taining all possible combinations of weak and strong satisfaction of the field equations and 

boundary conditions, as well as additional variants that can be obtained by weighted 

combinations of these basic principles ("parameterized variational principles"). Next to the 

principle of virtual displacement the most important principles are the Hellinger-Reissner 

principle and the Hu-Washizu principle. Table 2.1 gives a brief comparison between the 

most important variational principles in context of the finite element method.  

  

 
Table 2.1: Comparison of variational principles 

 

2.2.2 Numerical Modeling  

 



In order to apply the Finite Element Method, the continuous formulation of the boundary 

value problem of nonlinear elasto-dynamics has to be transformed into a discretised form. 

Starting from the weak form (eq. 2.33), a time and space wise discretisation is conducted. 

This leads to a non-linear system of equations, which can be solved conveniently in an iter-

ative manner using computer resources. The following sections introduce the fundamental 

ideas and methods of space and time integration. Further information about the specific 

element formulations used in the scope of this work are presented in section 2.3.1.  

  

2.2.2.1 Space Discretisation  

A continuous body B is divided into non-overlapping domains Ωe, the so-called finite ele-

ments (eq. 2.34). The quantities of the considered problem, such as displacements or stress, 

are specified by element wise functions within the finite elements. Thereby, the relevant 

continuous quantities are transferred to a discrete set of unknowns and thus approximated 

on a local level.  

 
 
      (2.34) 
 
 
 

In the following, the formulation of a basic three-dimensional brick element shall be 

derived.  

For a finite element Ωe, the shape functions Ni(ξ, η, μ) for all nodes i of the element are 

described by the natural coordinates ξ, η, and μ as parameters. The position vector of the 

reference and the current configuration of a point can be described as:  

 
 
  (2.35) 
 
 
 
 
  (2.36) 

 
  

The superscript h indicates an approximated quantity. nnod is the number of nodes within 

the finite element. Assuming that the position vectors of the nodes (Xi, xi) refer to the global 

Cartesian base, the parameters ξ, η, μ can be identified as the coordinates θ
1
, θ

2
, θ

3
. The 

same coordinates were used in section 2.2.1.1 for the description of the differential 

geometry. Considering eq. 2.7, the displacement field can be approximated to:  

 
 
       (2.37) 

Comparing 

2.35, eq. 2.36, 

 

 

 



and eq. 2.37 it becomes obvious that the same set of shape functions Ni can be used to 

approximate both: geometry and displacements. This duality in element formulations is 

known as the iso-parametric concept. As the shape functions are time independent, velocity 

and acceleration can be derived in eq. 2.38 and eq. 2.39 in discretized form:  

 
 
  (2.38) 
 
 
  (2.39) 
 
 
 

 

Accordingly, with eq. 2.2 and eq. 2.3, the covariant base vectors of the discretized geometry 

for reference and current configuration are:  

  

  (2.40) 

 

  (2.41) 
 
 

Using eq. 2.40 and eq. 2.41 in combination with eq. 2.11 the discretized deformation 

gradient and, via eq. 2.12, the discretized Green-Lagrange strain tensor is formulated.  

The Bubnov-Galerkin method that is applied here uses the same interpolation concept 

for real quantities of the problem as for assumed test or virtual quantities. The variation of 

the displacement in the discretized form, according to eq. 2.37, is:  

 
 
  (2.42) 
 

 

As the geometry is discretized into non-overlapping finite domains, so-called elements, 

the principle of virtual work can be expressed on an element level. The integration is per-

formed numerically by applying the Gauss quadrature rule in an element wise manner. 

Therefore, element based, local coordinate systems are introduced. The change of base from 

the physical curvilinear coordinate system to the element wise local system has to be in-

corporated into the integration.  

In the following, element based quantities are indicated by the superscript e. The contri-

butions of virtual work on all elements sum up to the virtual work of the whole system:  

 

 

 



 
         

(2.43) 

 
 

For the discretisation of the virtual work due to forces of inertia, the approximations 

introduced in eq. 2.39 and eq. 2.42 are used. The contribution of one element is:  

 
(2.44) 
 

(2.45) 

 

(2.46) 

(2.47) 

 

 

Summarising the nodal degrees of freedom within one element to a vector d
¯e

, the mass 

matrix of an element can be correspondingly expressed as m
e
. Using this notation, the con-

tribution of the forces of inertia to the virtual work can be written as:  

 
 
  (2.48) 
 
  

For distributed, non-constant external loading on the boundary, the consistent nodal 

load vector is derived by integration of the load over the element surface using the shape 

function. In the following, it is assumed, that external loads and body forces are indepen-

dent of the deformation of the structure: Tˆh 
,d =0 and B

h 
,d =0 . 

 
(2.49) 
 
 
 
 
(2.50) 
 
 
(2.51) 
 
(2.52) 
  

 

 

 

 



  

Integrating the contribution of the consistent nodal load vectors r
ei 

the load vector r
e 

is 

derived, which corresponds to the vector of unknown displacements d
¯e 

of the problem. 

Assuming a time dependent load, the element load vector is r
e 

ext(t). The discretized form of 

the virtual work due to time dependent external loading can be written as:  

 
  (2.53) 

 

The contribution of the internal forces is more difficult to be discretised due to the non-

linearity of the Green-Lagrange strain tensor E(d¯)with respect to displacements d¯. The 

variation of the Green-Lagrange strain tensor is derived in a discretised form, using d¯e 
as a 

vector of the unknown displacements:  

 
         (2.54) 
 
 

Using this, the contribution of the internal forces can be transformed to:  

 
(2.55) 
 
 
 (2.56) 
 
  

Summarising the contributions of virtual work for one element, the spacial discretised 

equation of motion is derived.  

 
   (2.57) 

 

The virtual work for the whole system is deduced by assembling the contributions from 
each element according to 2.43:  

 

   (2.58) 
 

Correspondingly, M resembles the mass matrix of the system, which has to be computed  
only once due to the Lagrangian formulation. The vector¯d contains all unknown degrees 
of freedom of the system. As well as its variation, the size and location of ¯d and its 
variation δ¯d have to comply with the Dirichlet boundary conditions.  

 

Applying the fundamental lemma of variational calculus, the spacial discretised, nonlinear 

differential equation and the initial conditions are derived:  

 

 

 

 

 



 
 (2.59) 

 
 

2.2.2.2 Time Discretisation  

After the spacial discretisation in finite elements, eq. 2.59 states the semi-discrete problem. 

As the next step, time discretisation is performed. The continuous time period [t0, This 

divided into nt time steps of equal length Δt. The system quantities are not regarded as time 

wise continuous anymore, but as defined at discrete points in time tn:  

tn=t0 +Δtn with n∈  [0, nt]   (2.60)  

In a time integration scheme the system quantities at the end of the new time step tn+1 are 

computed based on those at the end of the previous time-steps tn, tn−1, tn−2, etc. Time 

integration schemes can be classified into one-step and multi-step schemes, depending on 

the number of previous time steps used to derive the values for the new time step.  

In explicit time integration schemes, the dynamic equilibrium based on the equation of 

motion is computed at the beginning of the time step. For implicit time integration schemes, 

the equilibrium is considered at the end of the time step. In an implicit scheme, the state of 

motion at the end of a time step depends on itself. Thus, for each time-step a system of 

equations has to be solved.  

For the solution of problems concerning structural dynamics, implicit and explicit one-

step time integration schemes have proven to be especially well suited . In the simulation of 

light-weight structures under wind loading, modes with relatively low frequencies are 

expected. Therefore, considerably large time step lengths are sufficient to capture the phys-

ically relevant responses. For the applicable time step length, stability issues of the time 

integration scheme have to be considered. A time integration scheme is called uncondition-

ally stable, if the stability of the method does not depend on the time step length. Usually, 

explicit time integration methods are only conditionally stable. For linear structural behav-

ior, established methods based on the Newmark scheme show an unconditionally stable 

behavior. For the non-linear structural behavior, unconditionally stable time integration 

schemes are still a topic of ongoing research .  

 

Within this work, small numerical dissipation is applied to ensure the stability of the 

time integration scheme. Since this proved to be sufficient more elaborate energy 

conserving schemes could be omitted. Numerical dissipation occurs if the time integration 

scheme causes an error in computing the amplitude of a dynamic response. This effect is 

welcome in reducing the nonphysical so-called spurious higher frequency modes that are 

likely to occur in time integration methods for Finite Element Methods. For the lower 

frequency modes, which are of interest for the accuracy of the analysis, the influence of 

numerical dissipation has to be restricted.  

In the scope of this work, the Generalized-α time integration scheme is used. Thereby, it 

is possible to control the dissipation on the spurious higher frequency modes and to 

minimise the dissipation in the lower frequency modes. Compared to the Newmark 

 



method, the Generalized-α time integration scheme’s advantage is to maintain second order 

accuracy, providing that the relevant parameters are chosen in an appropriate way.  

As in the Newmark scheme, displacements dn+1 and the velocity d˙
n+1 at the end of time 

step Δt=tn+1 −tn can be approximated to:  

 
   (2.61) 
 
   (2.62) 
 
  

β and γ are the so-called Newmark parameters. Using the displacements dn+1 as primary 

variable, velocity d˙
n+1 and acceleration d¨ 

n+1 can be found by transforming eq. 2.61 and eq. 
2.62 to:  

(2.63) 
 
(2.64) 
 

 
 

For the Generalized-α method, two additional shift parameters αm and αf are introduced. 

In the time interval [tn, tn+1], αm and αf are applied for interpolation:  

 
   (2.65) 
 
   (2.66) 
 
   (2.67) 
 
   (2.68) 
 

 

Inserting eq. 2.61 and eq. 2.62 as well as eq. 2.65 -2.68 into the semi-discrete equation of 

motion eq. 2.59, the dynamic equilibrium can be formulated as:  

 
 
   (2.69) 
 
 

  
By the choice of the Newmark parameters β and γ and the interpolation parameters αm and 
αf, the degree of numerical dissipation is controlled. Depending on the spectral radius ρ∞, 
the four parameters can be determined as:  

 

 

 

 



 
 
   (2.70) 
 

 

For the high frequency range, the numerical dissipation can be evaluated by the spectral ra-

dius ρ∞∈  [0,1]. For ρ∞=1 no numerical dissipation is applied, but the computation might 

face unstable behavior for nonlinear problems. A choice of ρ∞ in the range of [0.85,0.95] in-

troduces a numerical damping in the high frequency modes, which proved to be sufficient 

for the examples presented in the scope of this work. However, this method requires the 

time step to be small enough, so that relevant physical modes are not regarded as spurious 

and subject to numerical dissipation.  

2.2.2.3 Linearisation  

For the linearisation of the problem, eq. 2.69 is transformed into a residual form:  

 

(2.71) 

 
 
The solution is computed by a Newton-Raphson iteration. For the iteration, a new index k 

is introduced, which describes the number of the current iteration. For a specific time step 

n+1, starting from the last computed residuum vector R(d
¯k
), the new residuum vector 

R(d
¯k+1

)shall be computed. For the linearisation the Taylor-series is used:  

 
(2.72) 
 
(2.73) 
 
  

 

 

By truncating the Taylor-series after the linear term, a linear system of equations is 
deduced:  

   (2.74) 

 

 

 

 



 
 
 
 
Inserting eq. 2.71 into eq. 2.74, the following equation is derived:  

 
 
 
 
 
(2.75) 
 
 
 

KT(d¯

n

k 

+1
)is the tangential stiffness matrix after time step n+1 and iteration step k. The term 

in brackets on the left side of eq. 2.75 can be identified as the effective stiffness matrix  

 
 
(2.76) 
 
 

and the term on the right side of eq. 2.75  

 
 
 

(2.77)  

 
 

as the effective load vector. Using efficient stiffness and efficient load vector, the linearised 

nonlinear elastic problem is stated as:  

 
 
(2.78) 
  

Equation 2.78 is solved for Δd¯

n

k+

+

1

1
. The solution is used to update d¯

n

k 

+1 
by applying eq. 2.73. 

For a converged solution it holds: d¯k

n

+

+

1

1 
≈ d¯k

n+1
. Using a good initial predictor for this 

Newton scheme, quadratic convergence can be reached. Velocity d
˙¯

n and acceleration d
¨¯n 

at the beginning and end of a time step are derived based on eq. 2.61 and 2.62.  

 

 

 

 



2.3 Modeling of Membrane Structures  

2.3.1 Numerical Analysis of Structural Behavior of Membrane Structures  

Membrane structures are classified as surface structures, since their ratio of thickness h to 

span L is usually h/L<<1. Each material point on the surface can be identified by two 

Gaussian surface parameters θ1 and θ2 at a certain time t in the current configuration      

x(θ
1
, θ

2
) and in the reference configuration X(θ

1
, θ

2
). Using these properties, the equations 

derived in section 2.2.1 can be simplified by an early semi-discretisation in thickness di-

rection θ
3 

, while the other dimensions stay continuous. Furthermore, based on the spatial 

load carrying behavior of membranes, the following assumptions are introduced:  

  a The thickness of the membrane is considered as constant and comparably 
thin. In accordance with the behavior of available membrane material the Poisson effect in 
thickness direction is neglected.  
  b Normal stress is constant over the thickness.  
  c Only normal and in-plane shear stresses are acting in the mid plane. All 
stress and strain components with respect to the thickness direction are zero.  

 

Due to the ’in advance’ discretisation in thickness direction, the element wise contributions 

of virtual work in the spatially fully discretized system can be simplified for eq .2.44, eq. 

2.49, and eq. 2.55 to:  

 
 
(2.79) 
 
(2.80) 
 
(2.81) 
 
 

 
  

A
0 

e 
is the area of a finite surface element in initial configuration. With spatial discretisation 

for all dimensions at a certain point in time t, the displacement d(θ
1
, θ

2
) = x(θ

1
, θ

2
) −      

X(θ
1
, θ

2
) and the virtual displacement δd(θ

1
, θ

2
) for a material point can be approximated 

as:  

  

 (2.82) 

 
 
(2.83) 

 

 



 

 

This holds for the time derivative of the displacement vector δd(θ
1
, θ

2
), the velocity vector 

δd
˙
(θ

1
, θ

2
), and the acceleration vector δd

¨ 
(θ

1
, θ

2
), respectively. All stress components 

normal to the surface are zero, i.e.:  

                                        S
i3 

=S
3i 

=0 and σ
i3 

=σ
3i 

=0                                       (2.84)  

The strain state can be derived via the strain tensor of the mid surface:  

 

(2.85) 
 

The artificially imposed prestress is taken into account as a residual stress added to the 

elastic stress in the reference configuration. The resulting PK2 stress tensor S in reference 

configuration is the sum of the prestress tensor S pre and the elastic stress tensor Sel:  

S =Spre+Sel=Spre+C: E    (2.86)  

For the usage of foils, an isotropic material behavior can be assumed. Accordingly, the 

components of the material tensor C can be derived as:  

 
(2.87) 
 
(2.88) 
 

 

Fabrics initially show an anisotropic, mainly orthotropic behavior in the perpendicular di-

rections of warp and weft. Furthermore, fabrics feature non-elastic, time and load history 

dependent properties.  

 

The procedures for time discretisation and the linearisation of membrane and cable ele-

ments are derived according to those presented in section 2.2.2.2 and section 2.2.2.3.  

For the discretisation of edge cables, a cable element formulation can be derived by 

introducing a second early spatial discretisation. All stress components perpendicular to the 

cable axis vanish and the cross section features a constant stress distribution.  

2.3.2 Form Finding  

Already in their initial state, membrane structures are subject to dead load and prestress. As 

explained above, the geometry of the structure has to ensure an equilibrium of internal 

membrane forces (including those due to prestress) and loadings. Therefore, the initial ge-

 

 



ometry of a membrane structure cannot be easily derived, but is the result of experimental 

or numerical analysis. The resulting shape resembles a free form surface, which generally 

cannot be generated by analytical methods.  

The procedure of deriving the initial shape of a membrane structure is called form find-

ing. As the form finding procedure is a both essential and challenging task in the design of 

membrane structures, fundamental equations and solution methods are introduced in the 

following sections.  

In a classical structural analysis, deformation and stress of a structure are computed 

based on the known geometry, the known load conditions, and material parameters. In 

contrast, the aim of a form finding procedure is to find a geometry for which a certain inter-

nal stress state and, in case, an external loading state, are in equilibrium. Additionally, the 

geometry has to satisfy prescribed geometric boundary conditions. As the geometry is the 

unknown while the internal and external stress distributions are prescribed, form finding 

can be identified as an inverse problem.  

In experimental approaches, small scale models are used to simulate a certain stress 

distribution in a flexible material and to record the resulting shapes. If a shape satisfies all 

requirements, it is upscaled and used as initial geometry for further design processes. 

Rubber, thin fabrics, or soap films are used as materials in the small scale models.  

In a numerical approach, the inverse problem of form finding is solved by 

computations. An arbitrary initial geometry, which satisfies the geometric boundary 

conditions, such as placement and type of supports, is chosen. This geometry serves as a 

known reference configuration (see fig. 2.5(a) ). The aim is to derive a new geometry as 

current configuration, which is in equilibrium for a prescribed prestress state (see fig. 2.5(b). 

In the following section, the problematic and solution strategies for a numerical form 

finding are introduced.  

2.3.2.1 Numerical Form Finding  

In the following a mechanically prestressed structure is assumed. For form finding consid-

erations, the low self-weight of the membrane itself has little influence on the result com-

pared to the prestress. Therefore, it is neglected as well as all external loads. Performing the 

form finding procedure without any loading but prestress, the geometry of the membrane 

solemnly depends on the distribution of membrane prestress and, in case, the ratio to pre-

stress of edge cables. In the design process this fact is utilised. Firstly, the distribution of 

prestress in the different structural elements is adjusted to derive an acceptable shape. Sec-

ondly, while keeping the prestress distribution constant, the level of the prestress is 

adjusted according to further requirements, such as the capability to withstand design 

loads. 

 

 
 
 
 



 
 
 
 
 

 
 
 

 

 

 

Figure 2.5: Form finding computation 

 
 

The state of equilibrium of the internal forces in the membrane can be described by the 

principle of virtual work in the integral (weak) sense:  

 
 
(2.89) 
 
  

This resembles the state of equilibrium in the current configuration x, with σas the Cauchy 

stress tensor and aas the area of the membrane surface. The displacement vector d describes 

the change of geometry from reference to current configuration, from the assumed initial 

geometry to the aspired "geometry of equilibrium". d,x is the derivative of the displacement 

vector with respect to the current configuration.  

The state of equilibrium can be described in the reference configuration X equivalently:  

 

  

Isoparametric view  

 

(a) Arbitary initial shape (reference 

configuration) 

Isoparametric view 

 

(b) Resulting equilibrium shape (current 
configuration)  

 

 



 
 
(2.90) 
 

 
 

  

with S as the second Piola-Kirchhoff stress tensor and A as the area of the membrane 

surface of the reference configuration. The deformation gradient F connects the reference 

configuration to the current configuration: 

 

 dx =F ·dX     (2.91) 

  

Using the deformation gradient together with further rearrangement, the principle of 

virtual work in the current configuration can be transformed to:  

 
 
 
     (2.92) 
 
 

In the general case, no analytical solution is possible. The Finite Element Method is used to 

solve the problem in a point wise manner for a discretised geometry. The translational 

degrees of freedom of the nodes of the finite element mesh are chosen as variables. Using 

the iso-parametric concept, the discretised geometry x
h
(θ

1
, θ

2
) and displacement d

h
(θ

1
, θ

2
) of 

the structure are approximated based on the position of the nodes of the finite element 

mesh via the shape functions:  

 
 
    (2.93) 
 
 
   (2.94) 
 
  

In a Cartesian coordinate system with orthogonal basis ei, the position xk and displacement 

d¯
k of a node k can be determined by the their coefficients x

k

i 
and d

i

k
:  

 
(2.95) 
 
(2.96) 
 

The unknown 

 

 

 

 



coefficients of the nodal displacements d
i

k 
are identified as unknowns of the form finding 

computation. They are summarised into a vector b of size ndof, whose components br 

resemble the r-th degree of freedom of the discretized problem. Using the fundamental 

lemma of variational calculus and the vector of unknowns br, the following nonlinear 

system of equations with ndof equations can be derived:  

 
 
 
(2.97) 
 
 

  

For the linearisation of eq. 2.97 similar procedures to those described in section 2.2.2.1 

are applied for the membrane and cable elements introduced in section 2.3.1 . Following the 

common procedure of geometrically nonlinear structural analysis, a direct solution via an 

iterative Newton-Raphson iteration seems to be possible.  

2.3.2.2 Solving the Inverse Problem  

Typically, inverse problems are ill posed in contrast to well posed problems, where a 
known physical situation is modeled. According to the French mathematician Jacques 
Hadamard (*1865, †1963), a well posed problem is defined by the properties of existence, 
uniqueness and stability of its solution. Ill-posed problems usually need to be re-formulated 
for numerical treatment. Typically this involves including additional assumptions. This 
process is known as regularisation.  
 
Form finding is an ill-posed problem. Especially the non-uniqueness of the solution can be 
easily explained: An identical surface can be approximated by different sets of nodal co-
ordinates for a finite element discretisation (fig. 2.6). This is due to the fact that except for 
the nodes at the edge, the FE-based nodes can move tangentially to the surface without this 
movement causing any strain energy. Therefore, the stiffness matrix of the system is singu-
lar for tangential movements within the membrane surface. Thus, eq. 2.97 is not solvable in 
a standard computation. A restriction of the degrees of freedom for the form finding 
computation to those perpendicular to the membrane surface would enable a simple 
solution, but is not applicable, since e.g. for flexible cable support, the possibility of 
tangential movements is necessary for a realistic physical modeling.  

 

 

 

 



Figure 2.6: Multiple valid solutions for a form finding problem. 

Several methods have been developed to overcome the difficulties of the inverse form 

finding problem. In the following, the basic ideas of the most common methods are pre-

sented:  

a Modified linearisation of the problem  

For the Newton-Raphson type iterative solution of the discretised problem, a not con-

sistently derived, non-singular stiffness matrix is used to approximate the problem.  

 
b Dynamic Relaxation  

Applying dynamic relaxation, the steady-state form finding problem is transferred into a 

dynamic problem by adding inertia and damping effects to the system. Thereby, the 

initially ill-posed problem becomes well-posed. The process of form finding is modeled 

as decay of an oscillation. The quiescent state serves as resulting geometry of the form 

finding computation .  

c Homotopy methods  

General mathematical methods to approach a solution of a singular problem are methods 

of numerical continuation , also called homotopy methods . A homotopy is a continuous 

transformation of one function into another. The basic idea to use homotopy in form 

finding is to modify the originally singular problem by a related well defined one, which 

fades out as the solution is approached. As an example, a singular problem f(x)=0 is 

modified by a non-singular problem g(x)=0 to the homotopy h(x)=0 with the homotopy 

factor λ∈ [0;1]:  

h(x) = λf(x) + (1 −λ)g(x) = 0     (2.98)  

The solution of h(x)=0 approaches the solution of f(x)=0 for λ approaching 1. The method 

 



is more successful as the function g(x)=0 is closer to the original function f(x)=0. Applied 

to the problem of form finding, the original singular function is the formulation of virtual 

work in the current configuration: δWσ=0. The related non-singular function is the 

formulation of virtual work in the reference configuration with prescribed PK2 stress: 

δWS=0.  

 
 
(2.99) 
 
  

The stabilising effect of δWS is due to the constant and known reference configuration, for 

which the PK2 stress is prescribed. By increasing λ from 0 to 1 until the solution fails, the 

geometry derived by the modified problem can be taken as an approximate solution of 

the original problem. The closer the homotopy factor λ is to 1, the closer the solution of 

the modified problem is to the solution of the original problem.  

Another important property of eq. 2.99 is that the closer the reference configuration is to 

the current configuration, the better the stabilisation term δWS describes the original 

problem. This property is used in the Updated Reference Strategy.  

– Updated Reference Strategy (URS)  

The Updated Reference Strategy was developed by Bletzinger and uses homotopy 

introduced above in an iterative manner. The solution of the modified problem (eq. 

2.99) is used as reference configuration for the next iteration step. For each iteration 

step, the desired Cauchy stress σ and second Piola-Kirchhoff stress S are newly 

prescribed. The update of the reference configuration by the solution of the 

modified problem gives the Updated Reference Strategy its name.  

With each iteration step, the difference between reference and current configuration 

decreases and the stabilisation term δWS more accurately describes the original 

problem. Convergence is reached, if the difference between reference and the 

current configuration is smaller than a certain threshold. For this solution, σ=S and 

the solution of the modified problem is identical to the solution of the original 

problem. The convergence is independent of the value of the homotopy factor λ, as 

long as λ is small enough to enable the solution of the modified problem. For a small 

homotopy factor, the solution procedure is more robust but needs more iterations. 

For a larger choice of λ, less iteration steps are needed, as long as the solution of the 

modified problem is possible. In order to increase the performance of the form 

finding procedure, λ can be increased during the computation. 

 

– Force Density Method  

 

Initially, the Force Density Method was developed for the design of cable net con-

structions for the Olympic Stadium in Munich, Germany . Meanwhile it has been 

extended for the application of membrane structures . The singular original problem 

is modified by assuming a constant force density. With this modification, the 

problem is well-posed and can be solved. In an iterative manner, the solution is 

 



used as a new reference configuration . The force density can be interpreted as a 

constant PK2 stress. Accordingly, the Force Density Method is a special form of the 

URS for λ=0. Only the stabilisation term δWS=0 is solved as the modified problem. 

Therefore, the force density method appears to be a consistent part of the more 

general URS.  

2.4 Example: The Leeming Awning Mobile Canopy Shelter  

The structural model of the Leeming Awning has to incorporate form finding and non-

linear analysis.  

2.4.1 Initial Considerations  

The canopy structure gains its stiffness from the anticlastic prestressed membrane, which is 

supported by eight tensioned cables and five steel support poles. The prestress is induced 

into the membrane by the cables. The support poles are standard scaffolding poles (54.5mm 

dia steel tube id 49.5mm) one is articulated at ground level and tensioned by another cable.  

Large displacements of the membrane and the support poles are to be expected. 

Therefore, the numerical model of the Leeming Awning has to take into account non-linear 

kinematics. This necessitates a geometrically non-linear analysis. As only small to moderate 

strains and stresses are expected, a linear elastic material law is applied.  

Inherent to geometrically non-linear structural analysis is the load-path dependency of 

the solution: for multiple load states, the structural deformation and stress state depend on 

the order in which the load states are applied. Thus, a load superposition is not sufficient 

for the consideration of multiple load cases. The application of prestress by tensing the 

respective cables, can be interpreted as an initial load case "prestress". The aim is to find a 

prestressed shape for the membrane with a uniform stress distribution. This is achieved by 

a form finding computation.  

The setup of an exact prestressed structural model of the Leeming Awning requires de-

tailed information about geometry and stress states. The bounding geometry was 

determined by a site survey which identified certain portions of the adjoining structure (the 

Leeming house) that could not be used due to its great age (>200 years) and flint and 

crumbling lime mortar construction. Detailed data about the initial stress state of the 

prestressed structural members, in general, and the membrane, in particular, is limited. It 

was determined that the program K3-Tent developed and made available for non-

commercial use by Nizhny Novgorod State University, Russia provides an excellent first 

appoximation to the final stable form. 

 
 
 
 



 

2.4.2 Form Finding Computation  

The geometry and topology of the Leeming Awning was input into the K3-Tent program, 

taking account of the site restrictions.  The result is shown as the “form found” mesh shown 

in figure 2.7. 

 

 

 

 

 

 

 

 

  Figure 2.7 K3-Tent output 

It was found that when transferred to the FEA program Ansys that there were significant 
geometrical errors, so the shape was corrected within the CAD program CATIA, and the 
corrected form is shown in Figure 2.8, and located within the full FEA model in Fig 2.9 

 
 
Figure 2.8 Geometrically corrected shape                      Figure 2.9  Awning within full FEA model 
 
The plan view of the site is shown in figure 2.10 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.10 Model Plan view 

 

  



  

 
At this stage it was confirmed that the final design would provide sufficient headroom and 
this is shown by the height contours in fig. 2.8, (red = 2 metres  headroom). 
 
 
 
The model was then tested within the Ansys environment using SHELL181 elements using 
the mesh shown in Figure 2.11 

 
 
 
 
Figure 2.11 
FEA mesh 
 
 
 
 
 
 

 
It was also confirmed that the membrane could be flattened so that multiple strips of cloth 
could be sewn together to make the final Awning.  Figure 2.12a,b,c,d,e show that the 
distortion from the final shape to a flat shape is less that 1 Degrees over the majority of the 
membrane, when it is split into 5 separate strips.  1 Degree should be easily absorbed by 
tensioning on the tensioning ropes. 

 
 
 
 
 
 
 
 
 

 
Figure 2.12a,b,c,d,e  Flattening Blue = no distortion yellow = 1 Degree distortion 
 

 

   



  

 

 
 
 
 

2.4.3 Analysis  

The model of the Leeming Awning was subjected to non-linear structural behavior analysis.  Whilst 

it was not possible to obtain unconditionally stable time integration solutions when self weight due to 

gravity effects on the awning, it did prove possible to obtain convergent solutions with self-weight 

omitted.  Since the ripstop nylon fabric chosen has a weight of 68 grams / metre squared ignoring this 

addition to the stresses on the awning will have a negligible impact on the solution. Two cases were 

considered one of 16 Newtons of force applied at five points and one to investigate safety factors 

where 3000 Newtons were applied to the five points.  The forces are shown in figures 2.13 and 2.14. 

 

 

Figure 2.13 16 Newtons Loading   Figure 2.14 3000 Newtons Loading 

 

The resulting displacements for the two case are shown in figures 2.15 and 2.16, from which it can be 

seen that the predicted displacements are less than 7mm worst case. 

 

Figure 2.15 Displacement 16 Newton Loading     Figure 2.16 Displacement 3000 Newton Loading 

 

The stresses are shown in figures 2.17 and 2.18, from which it can be seen that the normal stresses 

are a maximum of .26Mpa.  Under the worst case scenario the stresses are a maximum of 58.6 Mpa 

primarily concentrated close to the awning attachment points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

Figure 2.16 Stress 16 Newtons Loading                Figure 2.17 Stress 3000 Newtons Loading 

 

 

In the case of the 3000 Newtons Loading the safety factor for the awning was calculated and is 

shown in figure 2.18, and gives just over a factor of 4, again primarily at the attach points.  It is not 

considered that this load will be approached, but if this were to be the case then strengthening at the 

corners is indicated, probably by doubling the thickness of the awning for 0.5 metre from the corners. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18 Safety factor 3000 Newtons Loading. 

 

In order to check the flattenings (figures 12a-e) a 1 to 20 scale model was produced (Fig. 

2.19), which confirmed that the structure was indeed stable, in accordance with the 

predictions of the K3-Tent software.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19  1 to 20 scale model of the Leeming Awning 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.20 Five Flattening strips 

 

 

Following this check the five flattening strips (an end-on view is shown in figure 2.20) were 

converted to Autocad .dxf format to be transferred to the specialist ripstop nylon fabricator for 

scaling up to fit the 150cm width material roll.  The curved edges to the flattenings can be clearly 

seen in figure 2.20.  However it was then discovered that ripstop nylon was only available in 150mm 

width rolls and the design in figure 2.20 required a roll width of about 180mm, so the positioning of 

the splitting lines in the awning was adjusted to that in figure 2.21, and a final scale model to check 

the design was produced as shown in figure 2.22. 

 

Figure 2.21 Flattened Strips 150mm fabric   

 

 

          Figure 2.22 Final Model 5 strips 

 

Positioning of the supports is shown in figure 2.23 

 

Figure 2.23 Positioning of the supports for the Leeming Awning 

 

 

 

 

 

 

 

 



 

 

2.5 Wind Loading 

 

This work was done using CFD numeric analysis.  Initial work was done modelling the response of 

the awning to a uniform 20m/s wind, the standard for Oxfordshire for 1 in 50 chance of excess.  

(BSEN 1991-1-4:2005 + Al:2010 Incorporating National Amend1ment No.1 Figure NA.l Value of 

fundamental basic wind velocity vb).  This showed that in the worst case (northerly wind) there was 

an area of lower pressure above the awning near the supporting wall, see figure 2.24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.24 20m/s wind path. 

 

 

This gave rise to the pressure distribution shown in figure 2.25 

 Figure 2.25  20m/s pressure distribution 

 

 

 

 

 

 

 

 

 



 
 

 

However, further examination of the literature showed that the peak velocities are greater than the 

average value, but that the factor was no more than 1.7 worst case, so a figure of 2.0 was taken and 

further modelling was accordingly done at 40m/s.  The results are shown in figure 2.26 and 2.27 

Figure 2.26 40m/s pressure distribution. ISO               Figure 2.27 40m/s pressure distribution vertical 

 

From this it can be seen that the greatest pressures are to be found on the leading edge of the awning.  

Isocontour of the topside and underside pressures are shown in figures 2.28 and 2.29 

 

 

Figure 2.28 Detail pressure 40m/s Topside   Figure 2.29 Detail pressure 40m/s Underside 

 

 

 

Examination of these figures show that the worst case pressure differential is about half way along 

the top edge.  The pressure field on the awning was exported from Ansys CFX and imported into 

Ansys Structural as an external load, as shown in figure 2.30 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.30  40 m/s pressure field 

 

 

 



From this field it can be seen that the maximum pressure is 1094 Pa near to the lounge and -1000 Pa 

near to the gate posts.  When the solver was run again this gave a maximum displacement for a 

polyester awning of about 1mm, see figure 2.31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.31 Displacement of awning in 40 m/s north wind 

 

 

 

2.6 Conclusion 

 

 

Whatever. 

 
 

 


